LETTERS TO THE EDITOR

Regiochemistry of the Reaction of Ethoxyacetylene with 2,2,2-Trichlorobenzo[d]-1,3,2 λ^5 -dioxaphosphole, as Studied by Dynamic 13 C and 31 P NMR Spectroscopy

V. F. Mironov, M. A. Kazankova, A. A. Shtyrlina, N. M. Azancheev, F. F. Alekseev, and A. I. Konovalov

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia Moscow State University, Moscow, Russia

Received July 5, 2001

It is known that alkoxyacetylenes react with PCl_5 to give phosphonium salts, the products of electrophilic addition across the C=C bond, $[ROC(Cl)=CHPCl_3]^+$. PCl_6^- . Their structure was not elucidated exactly because of their lability and low solubility [1, 2]. Contrary to PCl_5 , 2,2,2-trichlorobenzo[d]-1,3,2 λ^5 -dioxaphosphole **I** is readily soluble in the majority of organic solvents and is therefore a convenient object for dynamic NMR experiments [3].

Here we report on the first dynamic 13 C and 31 P NMR study of the regiochemistry of the reaction of dioxaphosphole **I** with ethoxyacetylene in 1 : 1.1 ratio. According to 31 P NMR data, several compounds are formed at -10° C. They are characterized by three groups of upfield [$\delta_{\rm P}$ -18 to -20 (65%) and -16.1 ppm] and downfield [$\delta_{\rm P}$ 24-25 ppm (25%)] signals. The main direction is the preferred formation (65%) of two phos-

phorane compounds **IIa** and **IIb** (**IIa**, δ_p –20.1 ppm, $^{2}J_{\text{PCH}}$ 32.1 Hz; **IIb**, δ_{P} –18.0 ppm, $^{2}J_{\text{PCH}}$ 24.6 Hz) in 5: 1 ratio. On heating to 65°C, they undergo complex disproportionation to give spirophosphoranes and phosphonates as final products. The structure of phosphoranes **IIa** and **IIb** was determined from the ¹³C NMR spectrum (-10°C). This spectrum contains a double set of similar signals of carbon atoms related to two main isomeric phosphoranes with the P-C bond. Considering the data of [1, 2], we identified them as Z (IIa) and E (IIb) isomers of 2,2-dichloro-2-(2chloro-2-ethoxyethenyl)benzo[d]-1,3,2 λ ⁵-dioxaphosphole. Thus, under very mild conditions dioxaphosphole I adds to ethoxyacetylene with predominant formation of the cis product. Formation of a small amount of the *trans*-addition product is hardly due to the Z-E isomerization, because the ratio of the isomers is approximately the same at -10 and 20° C.

In addition, unusual insertion of ethoxyacetylene into the five-membered ring of phosphorane **I** takes place, giving 4-ethoxybenzo[e]-1,2-oxaphosphorins **III** and **IV** (3 : 1) in a total yield of 25%. The final products of this reaction are characterized by the signals with $\delta_{\rm P}$ 24.5 (d, $^2J_{\rm PCH}$ 10.6 Hz) and 25.0 ppm (d, $^2J_{\rm PCH}$ 11.3 Hz). The structure of these compounds

was determined by ¹³C NMR spectroscopy. The signals were assigned considering the data of [4].

Hydrogen chloride released in the process reacts with ethoxyacetylene and vinylphosphoranes **II** to give CH₃CCl₂OEt and dichlorophosphorane **V**, which were also detected by ¹³C NMR.

The signal of phosphorane V in the ^{31}P NMR spectrum is located at δ_P –16.1 ppm (t, $^2J_{PCH}$ 16.0 Hz). The ^{13}C NMR spectrum of the P–CH $_2$ –C(O)Cl fragment contains the following signals, δ_C , ppm (J, Hz): 68.34 d.t (CH $_2$, $^1J_{PC}$ 139.0, $^1J_{CH}$ 139.0), 164.31 d.t [C(O)Cl, $^2J_{PCC}$ 10.8, $^2J_{HCC}$ 7.0].

Compound IIa. ¹³C NMR spectrum (0°C) (here and hereinafter, the shape of signal in the 13 C–{ 1 H} NMR spectrum is given in parentheses), δ, ppm (J, Hz): 109.02 d.d (d) (C¹, $^{1}J_{PC}$ 195.2, $^{1}J_{HC}$ 177.8), 154.65 d.t.d (d) (C², $^{2}J_{PCC}$ 6.3, $^{3}J_{HCOC}$ 3.8, $^{2}J_{HCC}$ 2.2), 144.39 m (s) (C³, $^{2}J_{POC}$ 0), 111.24 d.m (d) (C⁴, $^{1}J_{HC}$ 168.1, $^{3}J_{POCC}$ 14.6, $^{3}J_{HCCC}$ 9.4, $^{2}J_{HCC}$ 4.5, $^{4}J_{HCCC}$ 0.7), 123.20 d.m (s) (C⁵, $^{1}J_{HC}$ 162.8, $^{3}J_{HCCC}$ 7.8, $^{2}J_{HCC}$ 1.0), 69.74 t.q.d (d) (OCH₂, $^{1}J_{HC}$ 149.0, $^{2}J_{HCC}$ 4.3, $^{4}J_{PCCOC}$ 0.9), 14.04 q.t (s) (CH₃, $^{1}J_{HC}$ 127.8, $^{2}J_{HCC}$ 2.8).

Compound IIb. ¹³C NMR spectrum (0°C), $δ_{\rm C}$, ppm (J, Hz): 105.49 d.d (d) (C¹, $^1J_{\rm PC}$ 224.8, $^1J_{\rm HC}$ 166.4), 155.84 d.t (d) (C², $^2J_{\rm PCC}$ 8.1, $^3J_{\rm HCOC}$ 2.2), 144.13 m (s) (C³, $^2J_{\rm POC}$ 0), 111.60 d.m (d) (C⁴, $^1J_{\rm HC}$ 168.1, $^3J_{\rm POCC}$ 14.6), 123.51 d.d (s) (C⁵, $^1J_{\rm HC}$ 163.1, $^3J_{\rm HCCC}$ 7.8), 69.40 t.q.d (d) (OCH₂, $^1J_{\rm CH}$ 147.3, $^2J_{\rm HCC}$ 4.0, $^4J_{\rm PCCOC}$ 3.9), 14.50 q.t (s) (CH₃, $^1J_{\rm HC}$ 128.0, $^2J_{\rm HCC}$ 2.8).

Compound III. ¹³C NMR spectrum (25°C), $\delta_{\rm C}$, ppm (*J*, Hz): 85.66 d.d (d) (C³, ¹ $J_{\rm PC}$ 173.3, ¹ $J_{\rm HC}$ 166.4), 163.0 m (d) (C⁴, ² $J_{\rm PCC}$ 16.1), 116.26 m (d)

Compound IV. ¹³C NMR spectrum (25°C), $δ_{\rm C}$, ppm (J, Hz): 86.49 d.d (d) (${\rm C}^3$, ${}^1J_{\rm PC}$ 173.2, ${}^1J_{\rm HC}$ 166.4), 162.54 m (d) (${\rm C}^4$, ${}^2J_{\rm PCC}$ 15.8), 118.96 m (d) (${\rm C}^5$, ${}^3J_{\rm PCCC}$ 11.9), 147.50 m (d) (${\rm C}^6$, ${}^2J_{\rm POC}$ 7.8), 120.16 d.d (d) (${\rm C}^7$, ${}^1J_{\rm HC}$ 166.9, ${}^3J_{\rm POCC}$ 9.5), 132.26 d.d (s) (${\rm C}^8$, ${}^1J_{\rm HC}$ 168.0, ${}^3J_{\rm HCCC}$ 6.0), 129.88 m (d) (${\rm C}^9$, ${}^3J_{\rm HCCC}$ 11.2, ${}^2J_{\rm HCC}$ 3.4, ${}^2J_{\rm HCC}$ 3.4, ${}^5J_{\rm POCCCC}$ 1.0), 65.02 m (d) (OCH₂, ${}^4J_{\rm PCCOC}$ 3.1).

The ¹³C, ¹³C-{¹H}, ³¹P, and ³¹P-{¹H} NMR spectra were recorded on a Bruker MSL-400 (¹³C, 100.6 MHz; ³¹P, 162.0 MHz) spectrometer in CDCl₃ relative to internal HMDS or external H₃PO₄.

ACKNOWLEDGMENTS

The study was financially supported by the Russian Foundation for Basic Research (project no. 00-03-32835).

REFERENCES

- Dogadina, A.V., Mingaleva, K.S., Ionin, B.I., and Petrov, A.A., *Zh. Obshch. Khim.*, 1972, vol. 42, no. 10, p. 2186.
- 2. Kazankova, M.A., Satina, T.Ya., Lun'kov, V.D., and Lutsenko, I.F., *Zh. Obshch. Khim.*, 1978, vol. 48, no. 1, p. 70.
- 3. Mironov, V.F., Cherkasov, R.A., and Konovalova, I.V., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 3, p. 422.
- 4. Mironov, V.F., Konovalov, A.I., Litvinov, I.A., Gubaidullin, A.T., Petrov, R.R., Shtyrlina, A.A., Zyablikova, T.A., Musin, R.Z., Azancheev, N.M., and Il'yasov, A.V., *Zh. Obshch. Khim.*, 1998, vol. 68, no. 9, p. 1482.